
The NetLogger Methodology for Distributed System
Performance Analysis

Dan Gunter, Brian Tierney, Brian Crowley, Mason Holding, Jason Lee
Lawrence Berkeley National Laboratory

Abstract

Diagnosis and debugging of performance problems on complex distributed systems requires access to
performance information at both the application and system level from a heterogeneous collection of hosts
and networks. We describe a methodology, called NetLogger, that enables real-time diagnosis of
performance problems in such systems. The methodology includes tools for generating precision event logs,
an interface to a Java-based agent system that automates the execution of monitoring sensors and
collection of monitoring events, and tools for visualizing the log data and real-time state of the distributed
system. The approach is novel in that it combines network, host, and application-level monitoring,
providing a complete view of the entire system.

1. Introduction
The performance characteristics of distributed applications are complex, rife with “soft failures” in

which the application produces correct results but has much lower throughput or higher latency than
expected. Because of the complex interactions between multiple components in the system, the cause of
the performance problems is often elusive. Bottlenecks can occur in any component along the data’s path:
applications, operating systems, device drivers, network adapters, and network components such as
switches and routers. Sometimes bottlenecks involve interactions between components, sometimes they are
due to unrelated network activity impacting the distributed system.

Usually the interactions between components are not known ahead of time, and may be difficult to
replicate. Therefore, it is important to capture as much of the system behavior as possible while the
application is running. It is also important to respond to performance problems as soon as possible; while
post-hoc diagnosis of this data is valuable for systemic problems, for operational problems users will have
already suffered through a period of degraded performance.

We have developed a methodology, called NetLogger, for monitoring, under realistic operating
conditions, the behavior of all elements of the application-to-application communication path in order to
determine exactly what is happening within a complex system.

Distributed application components are modified to produce timestamped logs of “interesting” events
at all the critical points of the distributed system. The events are correlated with the system’s behavior in
order to characterize the performance of all aspects of the system and network in detail

Monitoring of the system’s behavior can also be modified dynamically while an application is running.
A separate system of software agents, called Java Agents for Monitoring and Management (JAMM),
provides a coherent and flexible interface to an extensible set of system “sensors”, which provide essential
data such as CPU load, interrupt rate, TCP retransmissions, TCP window size, and so on. Visualization of
the log data can be used to provide interactive feedback to the system monitoring service.

NetLogger has demonstrated its usefulness in several contexts, including the Distributed Parallel
Storage System (DPSS)[ref], and Radiance[ref]. Both of these are loosely-coupled client-server
architectures. In principle, however, the approach is adaptable to any distributed system architecture. The
way in which NetLogger is integrated into a distributed system will vary, but NetLogger’s behavior and
utility are independent of any particular system design.

2. NetLogger Toolkit Components
All the tools in the NetLogger Toolkit share a common log format, and assume the existence of

accurate and synchronized system clocks. The NetLogger Toolkit itself consists of three components: an
API and library of functions to simplify the generation of application-level event logs, a set of tools for
collecting and sorting log files, and a tool for visualization and analysis of the log files.

2.1. Common log format
NetLogger uses the IETF draft standard Universal Logger Message format (ULM) [ref] for the logging

and exchange of messages. Use of a common format that is plain ASCII text and easy to parse simplifies
the processing of potentially huge amounts of log data, and makes it easier for third-party tools to gain
access to the data.

The ULM format consists of a whitespace-separated list of “field=value” pairs. ULM required fields
are DATE, HOST, PROG, and LVL; these can be followed by any number of user-defined fields.
NetLogger adds the field NL.EVNT, whose value is a unique identifier for the event being logged. The
value for the DATE field has six digits of accuracy, allowing for microsecond precision in the timestamp.
Here is a sample NetLogger ULM event:

DATE=20000330112320.957943 HOST=dpss1.lbl.gov PROG=testProg LVL=Usage NL.EVNT=WriteData
SEND.SZ=49332

This says that the program testprog on host dpss1.lbl.gov performed a WriteData event with a send
size of 49,322 on March 30, 2000 at 11:23 (and some seconds) in the morning.

The user-defined events at the end of the log entry can be used to record any descriptive value or string
that relates to the event such as message sizes, non-fatal exceptions, counter values, and so on.

2.2. Clock synchronization
In order to analyze a network-based system using absolute timestamps, the clocks of all relevant hosts

must be synchronized. This can be achieved using a tool which supports the Network Time Protocol (NTP)
[ref], such as the xntpd [ref] daemon. By installing a GPS-based NTP server on each subnet of the
distributed system and running xntpd on each host, all the hosts’ clocks can be synchronized to within
about 0.25ms. If the closest time source is several IP router hops away, accuracy may decrease somewhat.
However, it has been our experience that synchronization within 1 ms is accurate enough for many types of
analysis. The NTP web site [ref] has a list of public NTP servers that one can connect to and synchronize
with.

2.3. NetLogger API
In order to instrument an application to produce event logs, the application developer inserts calls to

the NetLogger API at all the critical points in the code, then links the application with the NetLogger
library. This facility is available in six languages: Java, C, C++, Perl, Python, and Fortran. The API has
been kept as simple as possible, while still providing automatic timestamping of events and logging to
either a local file, syslog, or to a remote host.

Here is a sample of the Java API usage:
NetLogger eventLog = new NetLogger(“testprog”);
eventLog.open(“dolly.lbl.gov”, 14830);
…
eventLog.write(“WriteData”, “SEND.SZ=” + sz);
…
eventLog.close();

If the value for sz is 49332, and the program is running on the host dpss1.lbl.gov, the write()
statement above will produce the sample log entry provided in the description of ULM, above. In this case,
the data will be sent to port 14830 on the host dolly.lbl.gov.

Even in a compiled language such as C, logging can perturb the host or the network if it occurs too
frequently. In order to accommodate short, sparse bursts of activity, the library can optionally buffer the log
entries in memory, and later flush them from the system. We have found that network load is not greatly
affected if less than one thousand messages per second are logged, however, an internal binary format, such
as Pablo’s SDDF [ref] is being actively researched as a way to extend NetLogger to handle higher-
throughput scenarios.

2.4. Event log collection and sorting
NetLogger facilitiates the collection of event logs from an application which runs across a wide-area

network by providing automatic logging to a chosen host and port. A server daemon, called netlogd,
receives the log entries and writes them into a file on the local disk. Thus, applications can transparently

log events in real-time to a single destination over the wide-area network. A similar tool, the Real-Time
Collector, has been developed in order to receive events from both applications and system event
monitoring services, such as the JAMM monitoring system; discussion of this tool will be deferred until
after JAMM has been presented and explained.

Event log entries are written in the order in which they arrive, which may not necessarily be in
timestamp order, or in the order most useful to the user. Therefore, a program called nlsort has been written
which can re-order ULM event logs by timestamp or a combination of user-defined fields.

2.5. Event log visualization and analysis
We have found exploratory, visual analysis of the log event data to be the most useful means of getting

at the causes performance anomalies. The NetLogger Visualization tool, nlv, has been developed to provide
a flexible and interactive graphical representation of system-level and application-level events. Nlv uses
three types of graph primitives to represent different events. These are shown in Figure 1.

Figure 1: nlv Graph Primitives

The most important of these primitives is the lifeline, which represents the “life” of an object (datum or
computation) as it travels through a distributed system. With time shown on the x-axis, and ordered events
shown on the y-axis, the slope of the lifeline gives a clear visual indication of the time it took for the object
to move through the distributed system. Each object is given a unique identifier by placing a unique
combination of values in one or more of its ULM fields. These values are used for all events along the path.
In a client-server system, one such event path might include: a request’s dispatch from the client, the
request’s arrival at the server, the begin and end of server processing of the request, the response’s dispatch
from the server, and the response’s arrival at the client.

The other two graph primitives are the loadline and the point. The loadline connects a series of scaled
values into a continuous segmented curve, and is most often used for representing the rise and fall of
system resources such as CPU load or free memory. The point data type is used to graph single
occurrences of events, often error or warning conditions such as TCP retransmits.

In order to assist correlation of observed system performance with logged events, nlv has been
designed to allow real-time visualization of the event data as well as historical browsing and playback of
interesting time periods. In the real-time mode, the graph scrolls along the time axis (x-axis) in real time,
showing data as it arrives in the event log. In historical mode, the user can change the position in the log
file, change the scale of the graph, zoom in and out interactively, choose a subset of events to look at, and
so on. The program switches between these two modes at the press of a button.

Finally, nlv can serve as a simple front-end to the Real-time Collector agent. Through this interface,
the user can actually request for the addition or subtraction of monitored events, such as CPU load or ping,
on any host which is being managed by the JAMM system. Because the user may add their own monitoring
tools to the JAMM system, this interactive visualization-driven monitoring may also include application-
specific behaviors and tests, creating a very rich environment for exploring application performance
characteristics.

time

Event A

Event B

Event C1

Event C2

Event C3
lifeline

point

loadline

3. JAMM Monitoring System
Historically, tools to monitor system characteristics such as CPU load and disk I/O statistics were

included with NetLogger and were distributed as part of the NetLogger Toolkit. However, we have more
recently come to the conclusion that the complex task of managing and automating the log data in a
distributed system demands a complementary but distinct architecture. The architecture we have developed,
called Java Agents for Monitoring and Management (JAMM) [ref], uses Java Remote Method Invocation
(RMI) [ref] to launch a wide range of system and network monitoring tools and then extract, summarize,
and publish the results. The JAMM components are illustrated in Figure 2.

Figure 2: JAMM Components

One of the primary goals of the JAMM system was to make the execution of sensors dependent on
actual client usage of the distributed system, in other words to only perform monitoring “on-demand”. On-
demand monitoring reduces the total amount of data, thus reducing system perturbation and simplifying
data management.

JAMM is based on a producer/consumer model, similar to the CORBA Event Service [ref]. Consumers
contact an agent to subscribe to certain monitored events, which are then pushed back to the consumer from
the event producer as a stream of data. A single query/response facility is also provided for consumers
interested in only a single datum.

3.1. Sensors
The JAMM system is designed to control a collection of sensors. A sensor is any program which

generates a time-stamped performance monitoring event. For example, there are sensors to monitor CPU
usage, memory usage, network usage, and server status. Users can incorporate their own events into the
system by wrapping their program with, or inheriting from, the provided Java class JAMM.Sensor.

3.2. Directory service
The directory service, currently implemented with the Lightweight Directory Access Protocol

(LDAP)[ref], provides the location of all event supplier agents and sensors. This allows for look-up and
discovery of all the monitoring available on the system.

3.3. Event supplier agent
At least one host in the distributed system must run the event supplier agent, which receives requests

from consumers for data from particular sensor(s) on particlar host(s), communicates with the lower-level
sensor manager to start and stop sensors when necessary, and updates entries in the directory service to
reflect the current status of all sensors, along with some long-term summaries of their measurements.

3.4. SOAP
Consumers communicate with the event supplier agent using the Simple Object Access Protocol

(SOAP). SOAP provides a generic XML-based form of remote procedure calls. The event supplier agent
has a set of well-defined procedures (or “methods” in Java terminology) which provide the semantics of its
interaction with the consumer.

4. Real-time Collector
The interface between the NetLogger application monitoring and visualization tools, and the system-

level monitoring performed by systems such as JAMM, is called the real-time collector. The jobs of the
real-time collector are to coordinate the aggregation of event trace data from applications with monitoring
data, and also to provide a gateway to the monitoring management system for a real-time event consumer
such as nlv. In order to do this, the real-time collector must perform three functions: receive application
data, process SOAP requests, and translate between XML and ULM.

In this discussion, JAMM will be used as an example of a producer of system-level monitoring data.
However, we anticipate that the adoption of SOAP and XML standards for monitoring data by several

members of the research community, particularly the Grid Forum Performance and Monitoring Working
Group [ref], will spawn the development of compatible systems which perform a similar function.

When a consumer wishes to create a flat file containing both application event traces and JAMM
monitoring data, they first start the real-time collector. The collector will automatically be able to receive
application event logs, replicating the functionality of netlogd (described above). To add monitored system
events, the consumer sends a SOAP request to the real-time collector indicating a monitored and event of
interest. The real-time collector translates this request into a SOAP request for JAMM’s event supplier.
Data is then returned to the real-time collector directly from the JAMM sensors. This sequence is illustrated
in Figure 3.

consumer

real-time
collector

application

2: ULM data

1: start

JAMM

3.1: SOAP
request

3: add event

4: XML data

file

ULM

Figure 3: Real-time collector action sequence

Because the new standard for event logs is XML, and not ULM, the real-time collector may also need
to translate the system-level monitoring input. However, the XML schema for these monitored events is
well-known, making this task is straightforward in most cases.

5. Results
We will present experimental results of a NetLogger analysis of a wide-area distributed application,

the Distributed Parallel Storage System (DPSS) [ref]. The analysis was motivated by unexpectedly low
throughput on a testbed network between LBNL in Berkeley,CA and Ixx Sxx Ixx (ISI) in Washington,
D.C. The visualization results provided a clearer picture of the bottlenecks in the system, and allowed for
refinement of application and network parameters, resulting in higher application throughput. **I hope**

5.1. DPSS and NetLogger
The DPSS is essentially a “logical block” server whose functional components are distributed across a

wide-area network. The DPSS uses parallel operation of distributed servers to supply high-speed data
streams. Using off-the-shelf Unix workstations and disks, a typical four-server DPSS can deliver an
aggregated data stream to an application of about 400 Mbits/s (50 MBytes/s). Other papers describing the
DPSS in more detail [ref] are available from: http://www-didc.lbl.gov/DPSS/papers.html.

The DPSS and the client used in this discussion have been instrumented with the NetLogger API to
produce time stamps for all important events. These time stamps follow the data block through the system,
from client request to client receipt of the data. Figure 4 illustrates the instrumentation points in the DPSS
architecture.

Figure 4: DPSS Performance Monitoring Points

5.2. Experiment
For a demonstration of the SuperMEMS project [ref], involving collaborators from ISI, MIT, Sarnoff

Laboratories, UC Berkeley, and LBNL (**others**?), the DPSS was used to transfer data between a host in
Berkeley,CA and Washington, D.C. Although the network connection between these hosts was a private
(i.e. testbed) OC-12 link (622 Mbits/s), slightly above the theoretical maximum for the DPSS output, the
observed throughput for the transfer was only about 30 Mbits/s. Fortunately for the project demonstration,
tighter bottlenecks in other parts of the distributed application made this throughput sufficient. However,
we thought that discovering the reason for this bottleneck would be an important and instructive task.

The DPSS was already instrumented with NetLogger calls, but for this experiment an extra
instrumentation point was inserted into the client, dpss_get (which fetches one dataset specified from the
command line). NetLogger timing information was output for every low-level read() from the incoming
data stream(s).

All the DPSS servers and the receiving client were monitored for CPU load, available memory, TCP
retransmits. In addition, disk I/O statistics (**which ones?**) were monitored on the DPSS servers.

5.3. Analysis
The nlv graph of a typical run of the experiment is shown in Figure 6. From this graph, we can infer

several important pieces of information. Bla bla bla…

Figure 5: nlv Graph of Experimental Results

6. Related projects

7. Future work

